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Abstract: A monitoring method for energy consumption of vehicles is proposed in the study. It is
necessary to have parameters estimating fuel economy with GPS data obtained while driving in
the proposed method. The parameters are trained by fuel consumption data measured with a data
logger for the reference cars. The data logger is equipped with a GPS sensor and OBD connection
capability. The GPS sensor measures vehicle speed, acceleration rate and road gradient. The OBD
connector gathers the fuel consumption signaled from OBD port built in the car. The parameters are
trained by a 5-layer deep-learning construction with input data (speed, acceleration, gradient) and
labels (fuel consumption data) in the typical classification approach. The number of labels is about
6–8 and the number of neurons for hidden layers increases in proportionate to the label numbers.
There are about 160–200 parameters. The parameters are calibrated to consider the wide range of fuel
efficiency and deterioration degree in age for various test cars. The calibration factor is made from
the certified fuel economy and model year taken from the car registration form. The error range of
the estimated fuel economy from the measured value is about −6% to +7% for the eight test cars. It is
accurate enough to capture the vehicle dynamics for using the input and output data in point-to-point
classification style for training steps. Further, it is simple enough to hit fuel economy of the other
test cars because fuel economy is a kind of averaged value of fuel consumption for the time period
or driven distance for monitoring steps. You can predict or monitor energy consumption for any
vehicle with the GPS-measured speed/acceleration/gradient data by the pre-trained parameters and
calibration factors of the reference vehicles according to fuel types such as gasoline, diesel and electric.
The proposed method requires just a GPS sensor that is cheap and common, and the calculating
procedure is so simple that you can monitor energy consumption of various vehicles in real-time
with ease. However, it does not consider weight, weather and auxiliary changes and these effects
will be addressed in the future works with a monitoring service system under preparation.

Keywords: fuel economy; energy consumption; deep-learning; GPS; vehicle monitoring

1. Introduction

It is very useful to monitor the energy consumption of vehicles in real-time. You can
estimate the amount of CO2 from various vehicles at a specific position in the road once
you have the monitoring capability. Then, it is possible to make a useful policy reducing
energy consumption for vehicles, and for road and traffic conditions. You can manage the
energy usage for the whole transport system including road, cars, fuel and electricity if
you have a monitoring system [1–5].

However, it is difficult to do it in real-time for a wide variety of vehicle types and
unexpected conditions of the traffic on the real road. You should adopt sensors to measure
the fuel/electricity consumption rate of gasoline/diesel/electricity [6]. You can read the
average fuel economy value displayed in the vehicle dashboard, of course, but it is not
a useful monitoring method because the numbers should be recorded and input to any
monitoring system [7].
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There are OBD (On Board Diagnostics) connection ports for inspection and mainte-
nance of vehicles and you can read the fuel consumption with OBD scanners [8]. However,
it is also inconvenient for the monitoring purpose because you need proper scanners that
are expensive and the positions of the OBD ports are different for different vehicles [9].

In this study, it is proposed that you can monitor energy consumption with the vehicle
speed, acceleration rate and road gradient obtained by a GPS sensor. A deep-learning
technique is applied to these GPS-measured data to get the precise energy consumption of
vehicles.

To explain the process in brief: First, you gather the vehicle speed, acceleration rate,
road gradient and energy consumption with a DAS (Data Acquisition System) equipped
with GPS sensor and OBD connection for reference cars consuming gasoline/diesel, respec-
tively. Then FC (Fuel Consumption) is scaled to be labeled for about 6–8 classes (ranges).
You can control the FC data to be distributed evenly for each class or label by the FC
scaling. In the next step, a proper D/L (deep-learning) 5-layer construction trains the
parameters to estimate FC labels with speed/acceleration/gradient data. The neurons for
each layer are set to be proportional to the numbers of the labels. It makes the scheme able
to follow the complexity of the classification problems increasing as the label numbers go
up. For example, if the numbers of labels is 6 then the construction and neurons becomes In-
put (3 neurons)-Hidden1 (6 neurons)-Hidden2 (6 neurons)-Hidden3 (6 neurons)-Hidden4
(6 neurons)-Output (6 neurons).

The trained parameters hit the label or range of the FC, not each FC value itself. It
becomes reliable to guess the FC class because there are only 6–8 labels. You do not have to
guess the all the specific FC values. It applies enough numbers of estimating parameters to
capture the vehicle dynamics to some degree but it is simple enough to be trained thanks
to the small number of the FC labels at the same time.

The next step for FC monitoring of the proposed method is the calibration process.
The trained parameters of the reference cars are calibrated for other test vehicles with the
dashboard displayed fuel economy data. It is not each FC value but the average FE (Fuel
Economy) for any length of time period or driven distance. It is relatively easier to guess
the average value (FE) than to match the each composing values (FC), as does the usual
machine learning approach that trains with average vehicle/road states for fixed/variable
period/distance averaged FE values [10]. The proposed method trains with point-to-point
input data to estimate the FC labels of the reference cars then it guesses average FE of other
cars during unlimited period or distance by calibrating. The calibration process is done by
certified fuel economy (CFE) and model year (MY).

As you can see in the next section, the machine learning approaches in previous works
are aiming average FE values with regressive ways. They are not accurate enough to catch
the vehicle dynamics to hit the FC values, but they are precise to estimate the averaged
FE value. There is no way to guess the FE of other vehicles in these types of approaches.
You can get the proper tool estimating average FE value for various vehicles with trained
parameters hitting each FC label and simple calibration process in the proposed D/L
approach. It is possible to monitor energy consumption of any vehicles once you have
secured the trained parameters and a calibration factor.

Figure 1 shows the process in brief. It is composed of ‘Test driving—D/L training
(Labeled FC)—D/L verifying (Labeled FC)—D/L predicting (Average FE)—Calibrating
(Average FE)’ processes. It proposes a proper calibrating scheme for internal combustion
engine cars and a similar predicting way for a battery-powered electric car in the study.
You cannot show the vehicle dynamics as precisely as the mechanical methods do with this
technique but it is useful enough to hit the averaged FE values by training for the FC labels
of the reference car with D/L and a simple calibration factor of test vehicles.
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Figure 1. The proposed process of energy consumption monitoring of vehicles by deep learning.

2. Related Works

Let us look into the FC (Fuel Consumption) estimation methods proposed in previous
works of other researchers. There are two categories in these fields. The first one is the
mechanical or physics-based method using the driving resistance forces [11–13]. The force
consists of four resistance terms. They are the friction, aerodynamic, gradient and inertia
resistance force. You can calculate the necessary engine power by multiplying vehicle
speed to the total resistance force. The fuel should be burned/consumed in the combustion
chamber of the engine to keep the power transferring through the powertrain gears and
axles then finally to the tire. The estimating process can be described in brief as follows:

Rfriction = µWg

Raerodynamic = 0.5 CDρAv2

Rgradient = Wgsinθ

Rinertia = Wa

Rtotal = Rfriction + Raerodynamic + Rgradient + Rinertia

P = η Rtotal v

FC =


ξP f or Normal driving
FCidle f or Idling state
0 f or Fuel − cut state

where,

• µ: Tire-road surface rolling friction coefficient;
• W: Vehicle weight [kg];
• g: Gravitational acceleration [=9.8 m/s2];
• CD: Drag coefficient;
• ρ: Air density [kg/m3];
• A: Vehicle frontal area [m2];
• v: Vehicle speed [m/s];
• θ: Road gradient [degree];
• a: Vehicle acceleration [m/s2];
• η: Power transfer efficiency;
• ξ: Fuel-power conversion factor [mcc/Watt/s];
• R: Resistance force [N];
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• P: Engine power [Watt];
• FC: Fuel consumption [mcc/s];
• FCidle: Fuel consumption in idle state [mcc/s].

As you can see, it is rather complicated and there are many coefficients which are
different for the types of vehicle/fuel and road conditions. However, it is accurate because
it can capture the vehicle dynamics once you have all the coefficients available—but it is
hard to obtain those coefficients because they are the internal/valuable numbers of the
car manufacturers. The more harsh and interesting part is that the final FC value falls
into a sector of three divisions (normal, idling, fuel-cut). If the vehicle drives normally,
then the FC is proportional to the necessary engine power. However, fuel injection stops
when the fuel-cut is activated. The fuel-cut is a basic function adopted in most modern
vehicles [14,15]. It is live when the gas pedal is released with the gear engaged in drive
position and engine speed kept higher than about 1200 rpm. It is for the better fuel economy
using the inertial driving force. It is like the braking regeneration function for electric cars,
including the hybrid ones. The last sector for FC is the idling state. It consumes fuel even
in the short waiting period like stand-by in front of the traffic sign.

The FC estimation is a kind of classification problem with three sectors of normal,
idling and fuel-cut driving state. The FC changes suddenly also for several driving events
of wide open throttling, warming up the coolant after cold start, driving in high altitude
area of low atmosphere pressure, lean-burn conditions of the part load driving, or handling
for feedback signal from O2 sensor in the exhaust pipe even in the normal driving state.
The fuel-power conversion factor (ξ) for the normal driving FC calculation is not a constant
value but it changes in sharp for different driving conditions. The fuel injection rate changes
rapidly in the instant of entering each domain of driving conditions as mentioned just
above. Therefore, FC estimation is a classification problem again for the injection controls
dealing with all the changing conditions i.e., domains of injection. The deep-learning
method is proper for the purpose. It is useful not only for the regression problems (the
target answer varies in continue) but also for the classification ones (the target answer
varies in several groups). Once you have secured the labeled dataset for the systems of
concern, then it is easy to train the deep-learning parameters hitting the target labels with
high precision. It is proposed in this study and you can see an FC labeling and classifying
scheme of deep learning in the next sections.

The second method for FC estimation involves machine learning approaches [10,16,17].
These train parameters calculating FC with various input data. The input data is the
states/conditions of vehicle and road usually. There are two types of machine learning
methods for these approaches. The first one is a machine learning for average fuel economy
with vehicle/road data [10,16]. The average fuel economy is in the unit of liter/km or
km/100 liter and it is averaged over a fixed/variable time period or driven distance (like
1–5 km in [10]). The input data are averaged over the same period/distance. Then it trains
the parameters estimating FE (Fuel economy) like a regression problem solving as follows:

Input = Average (state/conditions of vehicle/road)

Hidden = AF1 (Input × W1 + B1)

Output = AF2 (Hidden × W2 + B2)

Loss = MSE(FE, Output) =
1
N ∑(FEi − Outputi)

2

Wnext = Wprevious + η × ∂Loss
∂W

Bnext = Bprevious + η × ∂Loss
∂B

where,

• AF: Activation function (Usually sigmoid or Relu function);
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• W: Weights parameters;
• B: Bias parameters;
• FE: Fuel Economy [km/liter] or [liter/100 km];
• MSE: Mean Square Error.

Usually, the number of neurons for input/hidden is about 5–10 and there is only
one output neuron, i.e., the estimated average fuel economy value for the specific pe-
riod/distance. The number of hidden layers is also just one in most previous works
because layers should be simple for the single output value. All the characteristics make
this kind of method a regression problem approach and 3-layer construction of machine
learning (i.e., Input-Hidden-Output) with small numbers of neurons (for example, 12-5-1
in [10]). In short, the previous machine learning methods are a type of regressive solving for
moving average of FC for the period/distance. These methods use general sates/conditions
of vehicle/road as input data like speed, acceleration, curb weight, number of stops, du-
ration of stops and some manipulated values of the previous data, i.e., speed squared,
speed tripled, acceleration squared, etc., averaged over the specific period/distance. That
is natural because it is difficult to get the coefficients of the vehicles and roads necessary
to calculate the resistance forces as mentioned above for the mechanical FC estimation
methods. The drawback of these previous machine learning techniques is that they cannot
capture the vehicle dynamics without these coefficients and with the simple layers and
small number of neurons. It is not enough to catch up the complex domain change of injec-
tion with these simple constructions. It thus makes them a method for solving averaged FE
values in a regressive way. Therefore, you need an FC estimation method in real-time for
more precise and practical vehicle FC monitoring capability, as proposed in the previous
section.

The second and last approach of the machine learning category is guessing the certified
fuel economy with vehicle technical data [17]. The input data are composed of engine size,
engine cylinder numbers, engine valve numbers, fuel type, engine intake type, powertrain
type, etc. These input flows into the hidden layer just like the one for the average fuel
economy explained before. The construction is the same 3-layer (Input-Hidden-Output)
and the output is just one value of certified fuel economy that is easy to obtain from a
public database. There are three CFE data groups usually. They are for city, highway and
mixed driving cycles in the standard test procedure. The numbers of neurons are about
22-10-3 in [17]. The three output neurons are for the city, highway and mixed driving
CFE. In short, these methods cannot estimate even the average FE in real road driving.
They just guess the fixed values of CFE with various vehicle characteristics. It makes these
approaches useless for the vehicle energy consumption monitoring purpose.

You need a FC estimating method for the driving vehicles on the real road in real-time
as proposed in the previous section. The proposed method estimates the average FE of any
type of cars with trained parameters hitting the FC labels of the reference cars with the
help of the calibrating factor that is simple and easy to obtain.

3. Materials and Methods

The ten test vehicles were driven on the road to measure the necessary data. The data
are vehicle speed, acceleration rate, fuel consumption and road gradient obtained with a
DAS named VBOX which is a well-known data logger for motor sports practice and it is
manufactured by Racelogics Co. in Buckingham of UK. It is equipped with a GPS sensor
and OBD connectors. Table 1 summarizes the specification of VBOX and Figure 2 shows
VBOX connected to a test vehicle. The vehicle speed, acceleration rate and road gradient
are measured by the GPS sensor and fuel consumption by OBD connection of VBOX. The
data sampling resolution is 10 Hz.
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Table 1. Specifications of DAS (VBOX).

Spec. Accuracy Resolution

Heading 0.1 0.01
Position 3.0 m 0.1 m
Distance 0.05% 1.0 cm

Speed 0.1 km/h 0.01 km/h
Acceleration 1.0% 0.01 G

Figure 2. DAS (VBOX) connected to a test vehicle.

Table 2 shows the ten test vehicles specifications. The vehicle types of the test cars are
passenger sedan, SUV, van and sub-compact. The model year ranges from 2010 to 2020
and the vehicle weight from 1200 kg to 2700 kg. Test vehicles No. 1 and No. 2 are the two
reference cars fueled by gasoline and diesel, respectively. They were driven two times.
The first driving data were used to train the parameters estimating fuel consumption by
D/L technique and the second data to verify them. The other eight vehicles were driven to
obtain fuel economy values displayed on the dashboard. These data are for the calibrating
process of the parameters trained before. Test vehicle No. 10 is an electric car. The certified
fuel (electricity) economy of No. 10 is 5.3 km/kWh, and it uses electricity economy in
a precise unit. Figure 3 shows two test vehicles with VBOX and dashboard display as
examples. The GPS sensor is fixed on the car roof and OBD connecter is signaled from
the car OBD port under the driver’s dashboard as you can see in Figure 3. The signals
are saved in the memory of VBOX then you can move the data to any PC to check and
manipulate them.

Table 2. The specifications of test vehicles.

No. Model
Type

CFE 2

(km/L)
MY 3

(YYYY)
Weight 4

(kg)
Engine

(cc) Fuel DAS
Type

Test
Times

1 Mid PS 1 11.0 2010 1875 2656 Gasoline VBOX 2
2 Mid SUV 15.0 2012 2255 1995 Diesel VBOX 2
3 Large PS 14.2 2014 2170 2143 Diesel Dashboard 1
4 Large Van 9.5 2015 2980 2497 Diesel Dashboard 1
5 Mid SUV 14.1 2019 2005 1995 Diesel Dashboard 1
6 Small PS 13.7 2017 1575 1591 Gasoline Dashboard 1
7 Sub Compact 15.2 2016 1280 998 Gasoline Dashboard 1
8 Mid SUV 11.4 2016 2720 1998 Diesel Dashboard 1
9 Mid Van 11.3 2020 2760 2199 Diesel Dashboard 1

10 Mid SUV 5.3 5 2019 2080 EV 6 Electric Dashboard 1
1 PS: Passenger Sedan; 2 CFE: Certified Fuel Economy; 3 MY: Model Year; 4 Weight: Gross total weight;
5 5.3 km/kWh (Electricity Economy); 6 EV: Electric Vehicle.
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Figure 3. Test vehicle No. 1 connected to VBOX and No. 3 showing the dashboard display of fuel economy as examples.

4. Results
4.1. Driving Test Results

Table 3 shows the measured fuel economy and driving data of the ten test vehicles.
Test vehicles No. 1 and No. 2 are for reference data, measured by VBOX. These reference
data are for training and verifying the parameters by a deep-learning procedure.

Table 3. Fuel economy measured for ten test vehicles with VBOX and dashboard display.

No. Model
Type

FE
(km/L)

Test
Purpose

DAS
Type

Driving
Distance

(km)

Average
Speed
(km/h)

1 Mid PS
12.5 Training VBOX 81.3 40.6
7.7 Verifying VBOX 9.7 17.0

2 Mid SUV
15.6 Training VBOX 80.6 39.8
12.8 Verifying VBOX 12.5 20.6

3 Large PS 14.7 CAL. 1 Dashboard 28.5 21.5
4 Large Van 12.6 CAL. Dashboard 79.6 63.8
5 Mid SUV 21.2 CAL. Dashboard 71.6 53.0
6 Small PS 14.4 CAL. Dashboard 27.4 20.3
7 Sub Compact 20.6 CAL. Dashboard 48.2 38.0
8 Mid SUV 13.7 CAL. Dashboard 63.8 49.0
9 Mid Van 15.7 CAL. Dashboard 67.2 55.2

10 Mid SUV 9.3 2 CAL. Dashboard 63.3 51.9
1 CAL.: Calibration purpose; 2 9.3 km/kWh: Electricity Economy.

The training data of test vehicles No. 1 and No. 2 were gathered driving about
80 km, and the verifying data were for about 10 km driving. The data number is about
72,000 for training and about 7000 for verifying. The average speed is about 40 km/h
for training and 20 km/h for verifying. The difference between the number and range
of data for train/verification is very big. This is because you need a wide range of input
data (speed/acceleration/gradient) and output data (fuel consumption) to train properly
with a deep-learning technique [18]. However, lots of data are not necessary for verifying
because it is just an accuracy check process [19]. The ratio of data number for training and
verification is about 10 and this is reasonable for the D/L procedure.

Test vehicles No. 3 to No. 10 are for the calibration procedure. The input data
(speed/acceleration/gradient) are measured by a GPS sensor and the output data (fuel
economy) is the dashboard displayed average fuel economy values. The dashboard FE (Fuel
Economy) is estimated with the fuel consumption and driven distance measured by ECU
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(Engine Control Unit) built in the vehicle [20]. The dashboard FE is not measured/recorded
in real-time but it is rather a one-time value. You can record the value by resetting the FE
display in the dashboard before starting to drive. It continues to change while driving and
the final FE value is the last number shown in the dashboard just in the moment of ending
of test drive. You cannot compare or analyze the FE every second like the VBOX-measured
FC (Fuel Consumption), but the dashboard FE value can be used to calibrate the parameters
trained by D/L with the reference test data. It is easy to get the dashboard FE data of
various cars, but it is hard to connect VBOX to the OBD port and to set VBOX to extract the
FC data. It is very difficult to get the FC data for cars whose OBD signal protocol is not
open [21]. That is why there are just two reference vehicles with VBOX-measured FC data
and eight test cars with dashboard-displayed FE data. The proposed monitoring method
takes the detail fuel consumption data for training/verifying and it is calibrated with the
rough FE data without the measuring difficulty of the OBD port and protocol problem.

4.2. D/L Results

The VBOX-measured data of the reference vehicles are for training the parameters
by D/L technique. The input data is speed/acceleration/gradient and output data is fuel
consumption. Figure 4 shows the D/L layers construction to train the parameters (weights
and bias) estimating FC with input data. There are four hidden layers and it makes the
5-layer D/L construction [22]. The output or label is the FC data. FC is divided by a scale
factor to make the labels. The number of labels is about 6–8 in the D/L construction. The
computational platform is 3.2 GHz of Intel CPU (i5), RAM 4.0 GB, 64 bit Windows and
Python v.4.0 of Anaconda Release.

Figure 4. Deep-learning layers construction and the hyper-parameters.

The FC does not change continuously but steps up and down as the fuel injection
domain like fuel-cut/idling/acceleration/warm-up changes while driving [23]. It makes
the D/L procedure of estimating FC to be a classification problem not a regression one [24].
Therefore, you need a proper labeling scheme to train the parameters estimating FC values.

The labeling process is a little complicated, but it is presented in Figure 4 explaining a
5-label example. In the example, the maximum FC value is 50 mcc and the number of labels
(steps) is 5, then the scale factor becomes 10 mcc/step (=50 mcc/5 steps). The label is scaled
by 10 mcc in FC like, 10–20 mcc/20–30 mcc/ . . . etc. Therefore, label 0 is for 0.0–0.1 mcc,
label 1 is for 0.1–10 mcc, and label 2 is for 10–20 mcc of FC in the example. The 0.1 mcc is the
threshold for fuel-cut and idle for label 0. The fuel is not injected during the fuel-cut period
activated by releasing the gas pedal with gear in the drive position for better fuel efficiency.
The FC for idle is about 2–3 mcc for usual passenger cars [25]. Therefore, the FC is zero for
fuel-cut then it steps up to idle FC value. There is no continuous FC value increasing from
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fuel-cut to idle state. The label 0 is for fuel-cut condition under the threshold of 0.1 mcc
considering small fluctuation in the FC data.

In the FC labeling example of Figure 4, you can see the ‘Upper Limit’ term. It takes
account of the fact that high FC around maximum value of 50 mcc is too small to train. It
is exceptional to push the gas pedal to the wide open throttle while driving on the real
road. The labels for FC data higher than the ‘Upper Limit’ are ignored so that the D/L
construction train the parameters properly. The few FC data higher than the upper limit is
included in the label of just below the upper limit. It makes FC data higher than the upper
limit become the highest label 5 in the example, so that the D/L learns more reasonably [26].
The calculating procedure of each layer is as follows.

Hidden1 = Relu(Input × Weight1 + Bias1) (1)

Hidden2 = Relu(Hidden1 × Weight2 + Bias2) (2)

Hidden3 = Relu(Hidden2 × Weight3 + Bias3) (3)

Hidden4 = Relu(Hidden3 × Weight4 + Bias4) (4)

Output = Softmax(Hidden4 × Weight5 + Bias5) (5)

Loss = CEE(Output, Label) (6)

Meanwhile, Relu, Softmax and CEE are as follows.

Relu(x) = Maximum(0, x) (7)

Softmax(xi) = exp(xi)/sum of exp(xi) (8)

CEE(xi, yi) = Cross Entropy Error (xi, yi) = Average of {–loge(xi × yi)} (9)

The value of ‘Loss’ in Equation (6) is minimized by the gradient descent method in the
D/L process as follows.

Wi+1 = W − η × Gi (10)

Gi =
∂Loss
∂Wi

(11)

W is the weights or bias and G is the gradient of Loss per W in Equations (10) and (11).
η in Equation (10) is the learning rate and the value is set to 0.0005 in the D/L construction.
The weights and bias become the parameters estimating FC label with input data. The
numbers of weights and bias are same as the step numbers. It makes the numbers of
the estimating parameters to increase as the label number goes up. That is a flexible and
reasonable way to be trained in the usual D/L process because you need more parameters
to learn complex tasks having many labels [27]. The size of weights array of the second
hidden layer is [5 × 5] for the example shown in Figure 4 because the step or label number
is five.

The parameters are trained with the first data of the reference test result then they
are verified with the second data of the same reference vehicle. The D/L process is done
for two reference vehicles fueled by gasoline and diesel, respectively. The fuel consuming
mechanism is little different for gasoline and diesel [28]. That is why the reference vehicle
should be assigned to different fuel type. The parameters of the gasoline car are calibrated
with the FE of gasoline cars and the parameters of the diesel one is done with the diesel
car’s FE result in next phase. Table 4 shows the training and verifying results of D/L for
the two reference vehicles.
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Table 4. The results of D/L trained and verified fuel economy for reference vehicles.

No. Fuel
(Car Type)

D/L
Purpose

VBOX
Measured
FE (km/L)

D/L
Estimated
FE (km/L)

FC
Steps

FC
Upper
Limit

1
Gasoline
(Mid PS)

Training 12.5 12.5
6 35%Verifying 7.7 7.9

2
Diesel

(Mid SUV)
Training 15.6 15.7

8 35%Verifying 12.8 12.7

The number of FC steps or labels is six for the gasoline car and eight for the diesel
reference car in Table 4. It is determined by trial and error in the process of D/L training.
The upper limit considering few data around maximum FC is 35% for both reference cars.
The limit is chosen by trial and error also. The result of D/L training and verifying is
good. For example, the VBOX-measured FE of the gasoline reference car is 12.5 km/L and
trained parameters estimated it as 12.5 km/L, which is the exact same value. The verified
FE is 7.9 km/L for 7.7 km/L of the VBOX-measured FE. The trained result for the diesel
reference car is 15.7 km/L for 15.6 km/L of the VBOX-measured FE. The verified FE is
12.7 km/L for 12.8 km/L measured with VBOX, as shown in Table 4.

Tables 5 and 6 show the detail FC data distribution for labels of the gasoline and diesel
reference cars. The data for label 0 (fuel-cut) and high label (high engine load) is few in
contrast to that of FC data that belong to label 1 and 2, corresponding to the idling state
and low load range of engine power, respectively. The data distribution of FC like this is
natural in that the cars were driven on the real road during daytime. The car is idle at the
traffic sign often and runs slow for congestion usually. It means that the training data is
proper for FC in the real-world driving in the study [29].

Table 5. The detail results of D/L procedure for gasoline reference vehicle.

Label FC Range
(mcc)

FC Data
Number

FC Data
Percentage

0 ~0.10 5723 7.9%
1 ~6.03 28,740 39.9%
2 ~11.96 17,062 23.7%
3 ~17.89 10,346 14.3%
4 ~23.82 6446 8.9%
5 ~29.75 (higher) 3802 5.3%

Table 6. The detail results of D/L procedure for diesel reference vehicle.

Label FC Range
(mcc)

FC Data
Number

FC Data
Percentage

0 ~0.10 4663 6.4%
1 ~3.34 27,584 37.8%
2 ~6.58 9542 13.1%
3 ~9.82 8311 11.4%
4 ~13.06 8944 12.3%
5 ~16.31 5777 7.9%
6 ~19.55 4778 6.5%
7 ~22.79 (higher) 3392 4.6%

Figure 5 compares the D/L-estimated FC (in continuous line) with the VBOX-measured
FC (in dotted line) during random time periods to get a sense of FC values. The close-up of
the two FC data (Estimated vs. Measured) shows small differences in each value but the
overall changing pattern is similar. The FE result of averaged FC for all the data is almost
same as in Table 4 but the data cut from the random time period are slightly different as



www.manaraa.com

Sustainability 2021, 13, 11331 11 of 15

shown in Figure 5. The VBOX-measured FC moves more smoothly than the D/L-estimated
FC in Figure 5. It is trained with GPS-measured speed/acceleration/gradient for the D/L
estimation. The signals from the GPS are recorded by the resolution of 10 Hz, which is
faster than the OBD signals of 1 Hz usually. The OBD signal of FC is just for inspection
and maintenance practice [30]. It takes some time to burn the injected fuel. It means that
ECU controls FC slowly because of the necessary time for the combustion process [31].
Therefore, the OBD signal of FC moves smoothly compared to the electronic signals from
GPS sensors. It explains why D/L-estimated FC fluctuates more than the VBOX-measured
FC in Figure 5.

Figure 5. D/L trained and verified FC estimated (continuous line) vs. FC measured (dotted line).

5. Discussion

The parameters were trained by D/L technique to estimate FC for the gasoline and
diesel reference vehicles in the previous section. They estimate FE of the other eight test
cars and Table 7 compares the measured FE by dashboard display and the predicted FE by
the D/L trained parameters.

Table 7. Fuel economy compared: Dashboard display FE vs. D/L trained FE.

No. Model
Type

Dashboard
Display FE (km/L)

D/L Estimated
FE (km/L)

Reference
Car Ratio 1

3 Large PS 14.7 13.8 Diesel 1.065
4 Large Van 12.6 18.2 Diesel 0.692
5 Mid SUV 21.2 16.8 Diesel 1.262
6 Small PS 14.4 9.2 Gasoline 1.565
7 Sub Compact 20.6 12.5 Gasoline 1.648
8 Mid SUV 13.7 16.2 Diesel 0.846
9 Mid Van 15.7 15.8 Diesel 0.994

10 Mid SUV 2 9.3 2 12.8
15.5

Gasoline
Diesel

0.727
0.600

1 Ratio: FEDashboard / FED/L; 2 Test No. 10 is for Battery Electric Vehicle [km/kWh].
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The estimation is done for each fuel type. Test No. 6 and No. 7 are estimated by the
gasoline reference parameters and Test No. 10 is predicted by both parameters because
it is an electric car. The others are done by the diesel reference parameters. It seems that
the D/L-estimated FE values do not match up with the measured FE ones. The ratios of
the FE values in the last column of Table 7 are different for all the test vehicles. However,
it is reasonable that the FE becomes bad as times goes by and FE keeps high for cars
having good fuel efficiency. It implies that the parameters have to take account of some
characteristics of each vehicle. The correction should be done by vehicle characteristics that
are easily obtainable also for the monitoring practice. It is proposed a calibration factor
considering CFE and MY as follows.

Calibration Factor =
CFEtest

CFEre f erence
+

(
MYtest − MYre f erence

)
30

(12)

FE = FEDeepLearning × Calibration Factor (13)

MY in Equation (12) is the number of the year written on the car registration paper
like 2010, 2017, etc. MY for the gasoline reference cars (No. 1 and No. 6) are 2010 and 2017,
respectively. CFE is 11.0 km/L for reference car No. 1 and 13.7 km/L for test car No. 6.
Then, the calibration factor for No. 6 becomes as follows.

Calibration Factor =
13.7
11.0

+
(2017 − 2010)

30
= 1.479 (14)

Table 8 shows the calibrated final FE values and errors from the dashboard-measured
FE values. You can see the calibration factor of 1.479 for test vehicle No. 6 in Table 8. The
calibration factor is multiplied by the D/L-estimated FE value. The final value of FE goes
up with the calibration factor higher than 1.0 and it makes the error to be 5.5% for test
vehicle No. 6 in Table 8. It seems to be a quite good prediction for FE. The results are rather
similar for other test cars with this scheme of calibration of FE. The range of error is about
−6.0 to +7.0%, which is reasonable to monitor any vehicle on the real road in real-time.

Table 8. Fuel economy calibrated with certified fuel economy and model year.

No. Model
Type

Dashboard
Display FE (km/L)

Calibrated
FE (km/L)

Error 1

(%)
Calibration

Factor

3 Large PS 14.7 14.0 4.9 1.013
4 Large Van 12.6 13.3 −5.9 0.733
5 Mid SUV 21.2 19.7 7.0 1.173
6 Small PS 14.4 13.6 5.5 1.479
7 Sub Compact 20.6 19.8 4.0 1.582
8 Mid SUV 13.7 14.5 −5.6 0.893
9 Mid Van 15.7 16.1 −2.6 1.020

10 Mid SUV 2 9.3 2 10.0
9.1

−7.6
2.2

0.782
0.587

1 Error = 100 × (FEDashboard − FECalibrated) / FEDashboard; 2 Test No. 10 is for Battery Electric Vehicle [km/kWh].

The proposed calibration factor means that recent cars with good CFE would have
high FE value for the same driving states/conditions like speed, acceleration and road
gradient. You can get the data of CFE and MY from the registration paper of the vehicle,
and the data for the vehicles used in this research were included in Table 2.

Test No. 10 is for the electric vehicle and the predicted result is more accurate when
estimated by the diesel reference parameters. It may imply that the electric car spends
energy in a similar pattern to the diesel car. It may be because that the test No. 10 electric
vehicle is a mid-size SUV like the diesel reference car. However, the estimated result of the
study right now is that the electric car’s energy consumption is estimated more precisely
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by the diesel reference parameters. It is necessary to test more EVs and we are preparing
the test and estimation in future.

There are many factors acting on FE, except CFE and MY considered in the study. It is
necessary to consider the other conditions like passenger/freight weight, wet/dry weather,
on/off of auxiliary parts like air-conditioner, hot/cold air temperature, etc. However,
considering CFE, it is measured on the chassis dynamometer driving standard cycles under
the road load condition [32]. The term of ‘road load’ means driving resistance force of the
car. It includes rolling friction resistance and aerodynamic resistance with curb weight
condition. The effect of the tire–road friction, weight and car surface design is contained in
the CFE in some degree. In other words, the most significant car characteristics are already
included in the CFE. The MY reflects the aging effect of the car and it is a key factor for the
change of the FE also.

The biggest effect of other car elements is the weight change due to the passenger
numbers and freight load. FE changes with the various freight weight especially for
large trucks and buses. You must take into consideration the weight change for these car
categories and it is not reflected in the calibration process in this study. We are preparing
the vehicle monitoring service system, and the dataset will be available to accommodate the
other factors like weight, weather and auxiliary change in future. The calibration factor is a
useful approach to monitor energy consumption with a small number of car characteristics.
It may become a more and more reliable method as it includes other effects in addition to
the CFE and MY already considered in this study.

You can monitor energy consumption of vehicles with D/L-trained parameters of
reference vehicles corrected with CFE and MY. Figure 6 shows the monitoring process
proposed in the study once you have secured the D/L-trained parameters and the calibrated
factors.

Figure 6. FC monitoring process with trained parameters and calibration factor.

6. Conclusions

It is useful to monitor the EC (energy consumption) of vehicles in real-time. It is
proposed that the EC monitoring is possible with deep-learning technique. The fuel
consumption of gasoline and diesel reference cars is measured by VBOX that is a well-
known data logger equipped with a GPS sensor and OBD connector. The GPS sensor is
used for vehicle speed, acceleration rate and road gradient, while the OBD connector is
used for fuel consumption measurement.

The D/L technique is applied to optimize the parameters estimating FC with input
data (speed/acceleration/gradient) for the reference cars. The FC data is scaled to make
the labels in the D/L procedure. The FC does not change continuously but steps up and
down as the fuel injection domain changes. It makes the D/L procedure of estimating
FC to be a classification problem, not a regression one. The parameters are trained by the
proposed 5-layer D/L construction with input data and output data for gasoline/diesel
reference cars. The trained parameters estimated FC values for the verifying data precisely
for the same reference cars respectively.

Then the parameters predicted FE of the other eight test vehicles, but the predicted
FE values did not go well with the measured ones. That is natural for the wide range of
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fuel efficiency and deterioration degree of the test cars. Therefore, a calibration factor is
suggested in the point of view that recently released cars having good fuel efficiency would
keep the FE high. We thus suggest a calibration factor derived from certified fuel efficiency
and model year, which you can easily obtain from the car registration paper.

It is possible to make an accurate estimation of FE by the parameters trained by the
D/L technique and the calibration factor made from CFE and MY for the test cars. The
error ranges from −6% to 7% for FE of the eight test cars. The necessary data to estimate
FE is just vehicle speed, acceleration rate and road gradient, which are measurable with a
GPS sensor without difficulty. You can get the final FE value with the trained parameters
and the calibration factor.

It is easy to monitor energy consumption of vehicles by the proposed method on the
real road in real-time with just a GPS sensor that is cheap and common. The FE estimating
process is simple also because you can get the FE values by multiplying and adding the
trained parameters four times then applying the calibration factor once for the test cars.
The calculating process is so simple and easy that you can monitor the energy consuming
pattern of any vehicles in real-time on the spot.

The same scheme was used for an electric vehicle and a more accurate result was
obtained by the parameters of the diesel reference car. However, the result is just for one
electric car, and more tests of battery-powered cars are needed in the future.

The other car characteristics such as weight, weather and auxiliary change were not
included in the calibration factor and it will be added with monitoring service system
that is being prepared. For example, cars decelerate by the vehicle weight, aerodynamic
drag and tire rolling friction during the fuel-cut driving on the road. You can guess the
weight/drag/friction change of the specific cars for the fuel-cut driving condition with the
service system, and then the change can be reflected to estimate the FE properly.
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